Functional and Structural Analysis of a Highly-Expressed Yersinia pestis Small RNA following Infection of Cultured Macrophages

نویسندگان

  • Nan Li
  • Scott P. Hennelly
  • Chris J. Stubben
  • Sofiya Micheva-Viteva
  • Bin Hu
  • Yulin Shou
  • Momchilo Vuyisich
  • Chang-Shung Tung
  • Patrick S. Chain
  • Karissa Y. Sanbonmatsu
  • Elizabeth Hong-Geller
چکیده

Non-coding small RNAs (sRNAs) are found in practically all bacterial genomes and play important roles in regulating gene expression to impact bacterial metabolism, growth, and virulence. We performed transcriptomics analysis to identify sRNAs that are differentially expressed in Yersinia pestis that invaded the human macrophage cell line THP-1, compared to pathogens that remained extracellular in the presence of host. Using ultra high-throughput sequencing, we identified 37 novel and 143 previously known sRNAs in Y. pestis. In particular, the sRNA Ysr170 was highly expressed in intracellular Yersinia and exhibited a log2 fold change ~3.6 higher levels compared to extracellular bacteria. We found that knock-down of Ysr170 expression attenuated infection efficiency in cell culture and growth rate in response to different stressors. In addition, we applied selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis to determine the secondary structure of Ysr170 and observed structural changes resulting from interactions with the aminoglycoside antibiotic gentamycin and the RNA chaperone Hfq. Interestingly, gentamicin stabilized helix 4 of Ysr170, which structurally resembles the native gentamicin 16S ribosomal binding site. Finally, we modeled the tertiary structure of Ysr170 binding to gentamycin using RNA motif modeling. Integration of these experimental and structural methods can provide further insight into the design of small molecules that can inhibit function of sRNAs required for pathogen virulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of sRNA Expressions by RNA-seq in Yersinia pestis Grown In Vitro and during Infection

BACKGROUND Small non-coding RNAs (sRNAs) facilitate host-microbe interactions. They have a central function in the post-transcriptional regulation during pathogenic lifestyles. Hfq, an RNA-binding protein that many sRNAs act in conjunction with, is required for Y. pestis pathogenesis. However, information on how Yersinia pestis modulates the expression of sRNAs during infection is largely unkno...

متن کامل

Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis.

The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) ...

متن کامل

Macrophage Activation Redirects Yersinia-Infected Host Cell Death from Apoptosis to Caspase-1-Dependent Pyroptosis

Infection of macrophages by Yersinia species results in YopJ-dependent apoptosis, and naïve macrophages are highly susceptible to this form of cell death. Previous studies have demonstrated that macrophages activated with lipopolysaccharide (LPS) prior to infection are resistant to YopJ-dependent cell death; we found this simultaneously renders macrophages susceptible to killing by YopJ(-) Yers...

متن کامل

The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis.

Yersinia pestis, the agent of plague, has arisen from a less virulent pathogen, Yersinia pseudotuberculosis, by a rapid evolutionary process. Although Y. pestis displays a large number of virulence phenotypes, it is not yet clear which of these phenotypes descended from Y. pseudotuberculosis and which were acquired independently. Y. pestis is known to replicate in macrophages, but there is no c...

متن کامل

Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils.

The pathogenesis of infection with Yersinia pestis, the causative agent of plague, was examined following subcutaneous infection of BALB/c mice with a fully virulent strain expressing green fluorescent protein. Plate culturing, flow cytometry, and laser confocal microscopy of spleen homogenates throughout infection revealed three discernible stages of infection. The early phase was characterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016